BALD(Bayesian Active Learning Disagreement) 논문 해석
Active Learning 이미지를 활용한 모델링을 진행하다보면, 비용이 많이 드는 라벨링 작업이 문제가 될 때가 많습니다. 그렇기 때문에 적은 라벨링으로 높은 성능을 기록할 수 있는 모델을 만드는 것이 비용 측면에서 효율적입니다. Active Learning은 라벨링을 진행하지 않은 샘플들 중 정보가 많이 담겨있는 샘플을 선정하는 것을 목표로하는 분야입니다. Bayesian Active Learning Bayesian Active Learning은 Active Learning의 한 갈래로, 정보가 많이 담겨있는 샘플을 선정할 때, Bayesian 방법론을 사용합니다. 즉, 라벨링을 진행하지 않은 샘플들의 불확실성을 Bayesian 방법론을 통하여 측정하고, 불확실성이 높은 샘플들을 먼저 라벨링 해야할..
2023.01.24